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Abstract

High voter turnout in elections and referendums is
very desirable in order to ensure a robust democracy.
Secure electronic voting is a vision for the future of
elections and referendums. Such a system can coun-
teract factors that hinder strong voter turnout such
as the requirement of physical presence during lim-
ited hours at polling stations. However, this vision
brings transparency and confidentiality requirements
that render the design of such solutions challenging.
Specifically, the counting must be implemented in a
reproducible way and the ballots of individual vot-
ers must remain concealed. In this paper, we pro-
pose and evaluate a referendum protocol that ensures
transparency, confidentiality, and integrity, in trust-
less networks. The protocol is built by combining
Secure Multi-Party Computation (SMPC) and Dis-
tributed Ledger or Blockchain technology. The per-
sistence and immutability of the protocol communi-
cation allows verifiability of the referendum outcome

∗contributed also throughout previous employment at INSA
Lyon - LIRIS.

on the client side. Voters therefore do not need to
trust in third parties. We provide a formal descrip-
tion and conduct a thorough security evaluation of
our proposal.

Keywords: E-Voting, Trustless Networks,
Political Networks, Transparency, Unlinkability,
Blockchain

1 Introduction

The voter turnout for the 2018 US midterm election
was at 53.4% [Bureau, 2019]. Though compared to
previous elections this is a high value, almost half
of the population at voting age did not make use of
their right to vote. While multiple reasons may lead
to a decline, it is a common objective to render the
voters’ active participation as effortless and conve-
nient as possible. A secure voting system based on
remote clients could greatly improve the flexibility of
potential voters. It would significantly reduce the ad-
ministrative overhead of postal voting and eliminate
voters’ obligations to be physically present at a vot-
ing station during limited hours.
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In this paper, we focus on referendums, which can be
seen as a special instance of elections, with only two
options offered for vote. Even though referendums
are a simpler case of elections, implementing them
correctly is still very challenging [Clarkson et al.,
2008] [Springall et al., 2014]. Many parties may have
an interest in manipulation of the outcome. Further-
more, we consider the context of trustless networks,
where we assume that participants place little to no
trust in one another and there does not exist a cen-
tral trusted authority, or such an entity is not de-
sirable. A breach of the ballot-secrecy may result
in harmful consequences for voters. Given this sen-
sitive context, voters naturally seek solutions they
can trust. The classic analog way of conducting a
secret referendum is having voters cast their ballots
into boxes. This way they remain unlinkable to their
votes. However, the logistic effort that is required for
such an approach is tremendous. Ballot boxes must
be set up, ballots with voting options must be printed
and afterwards the counting must be realized by fair
participants. The complex chain of implicit actions
makes it hard to provide a proof of compliance for
every single step. In this article we try to address
this problem with an electronic-referendum scheme
that puts emphasis on transparency that is to say,
full client-sided verification of correctness.

1.1 Contribution

We propose a transparent referendum protocol with
immutable proceedings and verifiable outcome. We
define this immutability as the impossibility to tam-
per with the log of participant actions. Although
there already exist protocols with similar ambitions,
they commonly provide little evidence to the end user
that the designated protocol was followed in practice.
We suggest a protocol that is based on a creative com-
bination of existing cryptographic tools. In order to
achieve transparency, we also asses the viability of
our proposal considering mobile clients and discuss
to which extent the protocol can withstand adver-
sary attacks. Our evaluation concentrates on confi-
dentiality of votes, transparency and immutability of
proceedings and a verifiable outcome.
The key idea behind our contribution is to use a

blockchain as a complete log of all communication
between participants. While the secrecy of individual
votes is ensured by an SMPC scheme, the log allows
anyone with access to the ledger, to autonomously
compare the actual proceedings to the expected pro-
tocol. This verification can occur locally. Partici-
pants therefore gain proof of correctness by them-
selves and not via third parties.

1.2 Outline

In this article we first give a quick overview of re-
lated articles that pursue similar objectives. Some of
them follow strategies that are very different to our
approach. We point out the issues that they pose and
how we intend to address them.
Next comes a brief presentation of our model, fol-
lowed by an enumeration of the cryptographic tools
we apply within our protocol. Afterwards, we delve
into the exact phases and actions that describe our
protocol, followed by an evaluation in two parts. The
first part discusses how well our initial objectives are
met by the proposal. The second provides a security
analysis where we evaluate different adversary strate-
gies and their potential impact. Finally we present
our conclusions and delineate the potential topics of
further investigations.

2 Related Work

In this section, we present articles that discuss how to
design a protocol for electronic referendums. For each
one, we outline the key idea and highlight associated
disadvantages.

In [Benaloh, 1987] the authors describe how secret
sharing schemes can be used as SMPC for Secret-
Ballot elections. This work unarguably is the cryp-
tographic foundation to our proposal. However Be-
naloh’s formal model by itself provides no practical
transparency for the participants. In his approach,
security lies entirely in the applied threshold system,
that is to say, participants have no dynamic feedback
on the effectiveness of the applied security mecha-
nisms. Our proposal not only protects the privacy of
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voters, it also transparently monitors if ballots have
been potentially compromised.

In [Diaz et al., 2009], an architecture for a privacy-
aware electronic petition system is suggested and
evaluated. As petitions typically express only two
opinions (non-participation meaning approval, par-
ticipation meaning disapproval to a topic), it can
be considered a referendum system. The core ele-
ment in this approach is involving anonymous cer-
tificates to elegantly restrict the referendum to eligi-
ble participants and eliminate double-spending in a
privacy aware manner. However the suggested pro-
tocol does not provide enough transparency for an
anonymous voter’s participation: The act of partici-
pation by signing is not publicly transparent, there-
fore a dishonest petition server could discard signa-
tures. The outcome would be indistinguishable from
a case where the voter has never even contacted the
server. Notably the voter has no way to prove the
misbehavior of the signature-server. While our ap-
proach also involves anonymous credentials, we make
sure that the semantic of issued tokens is indepen-
dent of effectuated voting decisions. This allows us
to ensure transparency, which ultimately renders dis-
honest server behavior detectable.

[Zyskind, 2015] and [Zyskind et al., 2015] provide
a description of the Ledger-enabled SMPC platform
(ENIGMA). Our contribution differs in two aspects:

1. ENIGMA was not explicitly designed for refer-
endums. Though the authors mention a general
compatibility for such scenarios, its applicability
for this context is not assessed in much detail.

2. In their platform, the ledger is neither an ex-
clusive data-store, nor is it used as the exclu-
sive channel for inter-participant communica-
tion. Therefore participants do not obtain the
same level of communicative transparency as in
our solution.

[Cortier et al., 2019] rely on a threshold system that
can defend the secrecy of ballots until a fixed number

of colluding adversaries. However their protocol pro-
vides no control mechanism to monitor whether such
collusion was attempted or has already occurred. As
such voters can not obtain certainty that their votes
have actually remained undisclosed.

[Bursuc et al., 2019] identified similar objectives.
They introduce a metric to measure voter privacy
and examine how compromised systems perform un-
der that metric. In reaction to this evaluation they
then suggest a protocol that performs well, given the
metric. However, their protocol is very focused on
that specific aspect and provides no mechanisms for
other important goals, such as the prevention of bal-
lot dropping.

Very related to our approach is a proposal by [Li
et al., 2019], where an IoT enabled protocol is dis-
cussed. The presented approach gains security by
persisting encrypted votes in a blockchain. How-
ever there are two fundamental differences to our ap-
proach:

1. It does not include a client side analysis of com-
munication meta-data, excluding an additional
verification of protocol proceedings.

2. In the described model, there is a clear and inten-
tional separation between the blockchain infras-
tructure and the voting devices. For registration
and notably casting of ballots, the voters access
the blockchain via a gateway. This separation of
blockchain and clients also eliminates the possi-
bility to perform integrity checks on client’s side.
Clients thus have to rely on external entities for
full integrity checks of the blockchain.

[Lee et al., 2016] describe a blockchain based voting
protocol. In contrast to our proposal, their solution
involves a trusted third party for vote filtering.

[Ayed, 2017] also suggest a blockchain based voting
system. However, in their system the blockchain ar-
ranges persisted votes in an immutable order. There-
fore, voters can not update their vote, once it has
been submitted. Our system does not rely on such
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a mechanism and therefore does not come with this
restriction.

In [Riemann and Grumbach, 2015], the authors in-
troduce a taxonomy of further notions for distributed
voting protocols.

3 Our Model

3.1 Participants

We distinguish between physical entities, identifiers
and roles. Each physical entity possesses a unique
and anonymous identifier. Furthermore, there are
three roles that the physical entities can personify.
A single entity can personify multiple roles, but not
all combinations are allowed. The restrictions are ex-
plained in section 3.1.1.

3.1.1 Roles

Our protocol involves the following roles:

• Initiator: The initiator ensures all participants
obtain the information required for the protocol
execution.
This role I is represented by a single physical
entity init. The initiator provides a referendum
context that comprises all information required
by other participants to follow the referendum
procedure. It is the only action init ever per-
forms. He notably does not participate in the
subsequent voting or counting. The physical en-
tity behind init must not personify another role.
This restriction hinders collusion, as it isolates
referendum preparations from the entities exe-
cuting the protocol.

• Voters: Voters are the devices of natural per-
sons eligible to provide their opinion on the ref-
erendum context.
We define the eligible set of k physical voter en-
tities to a given referendum as: V = {v1, ..., vk}.

• Workers: Workers contribute to the execution
of the protocol’s underlying SMPC and provide

intermediate results required to compute the ref-
erendum outcome and verification checksum.
The set of n physical worker entities is a subset
of the voter entities: W = {w1, ..., wn}, W ⊂ V .
Workers are an example for physical entities per-
sonifying multiple roles. The physical entity be-
hind each worker also, at some point acts as a
voter. One advantage of this decision is that
the total amount of entities, required to run our
protocol decreases by |W |. In general, allowing a
single entity to act on behalf of multiple roles is
critical, as this gathers additional information at
an entity. However, in this case the applied secu-
rity mechanisms ensure that knowledge about a
single ballot does not enable the worker to infer
further information.

3.1.2 Identities

When we talk of participants P , we implicitly mean
the physical entities behind voters and workers.1 Par-
ticipants do not know one another directly, but only
by an anonymous pseudo-identifier p̄. Likewise we
introduce the set of all pseudo-identifiers as P̄ . Only
for illustration purposes, we denote a mapping func-
tion id : P → P̄ that translates a specific entity
p ∈ P to its associated identifier p̄ ∈ P̄ . It is im-
portant to state that in practice no entity must ever
possess such a function. Participant anonymity is an
essential element in our protocol. From this point
on when we talk of identifiers, we implicitly mean
pseudo-identifiers.
Each participant holds a keypair. The private key is
used for signatures and decryption. It never leaves
the participant. The public key is used for encryp-
tion and also serves as a participant’s identifier. We
assume, that the initiator holds a complete list of all
eligible voters’ identifiers V̄ = {id(v)|v ∈ V }.
We consider this to be a fair assumption, since Diaz
et al. demonstrated how anonymous credentials can
be issued among eligible voters, using an external cre-
dential server [Diaz et al., 2009].

1Although with the definition P = V ∪W , P is equal to
V , we intentionally introduce P for participants. By using
P instead of V , it becomes more clear that we are not only
interested in voter behavior.
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3.2 Ledger

A key component of our model is an immutable and
integrity-protected data-store that is directly acces-
sible by all participants. This is the ledger L. Access
to the ledger enables the retrieval of persisted records
and submission of new records. Persisted records
however can be neither modified nor erased.

3.2.1 Ledger-restricted Communication

Every participant locally operates a ledger-access
node that allows him to retrieve records, submit new
records and notably fully verify the ledger’s integrity
locally. We use the ledger as the exclusive communi-
cation medium among participants. As participants
only know one another by their identifiers, they ex-
change messages by adding and polling ledger records
whenever they communicate.

3.2.2 Message notation

Every record added by communicating participants
represents a message of format mαβ . The index α
specifies the sender’s identifier, β the recipient’s iden-
tifier. In case of broadcast messages no recipient β
is provided. We distinguish between the following
message types:

• bα with α = id(init)
The Initiator’s broadcast message, specifying the
referendum parameters.

• sαβ with α = id(vi), vi ∈ V , β = id(wj), wj ∈W
A voter sending a voting-related message to a
worker.

• rα with α = id(wj), wj ∈W
A worker’s broadcast message that contributes
to the referendum outcome.

• cα with α = id(wj), wj ∈W
A worker’s broadcast message that contributes
to the referendum validation.

The authenticity of message origins is ensured by the
author’s signature. As the registration of voters’ pub-
lic keys, described in 3.1.2, can be realized over the
ledger, it is fair to assume a trusted key-exchange

among participants, prior to the referendum execu-
tion.

3.3 Adversary Model

We consider all voters and workers as potential ad-
versaries. In section 5.2, we outline the exact expected
behavior of referendum participants. Our adversary
model covers that any Voter or Worker may deviate
from this expected behavior at any time.

3.3.1 Malicious communication

In terms of message exchange, we consider:

• submission of syntactically incorrect messages,
for instance messages that lack mandatory meta-
information such as the signature.

• submission of semantically incorrect messages.
This notably covers the submission of values out
of a legal range, as well as incorrect result-values
for delegated computations. This may also arise
for header information, such as the sender field.

• submission of messages that by format or content
are not covered by the phase in progress.

• inactivity where interaction is requested, that is
deliberate non-communication.

Adversaries may deviate from the expected behavior
individually or in groups.

3.3.2 Assumptions

We assume that all information in bid(init), verifiable
by each individual participant, is correct. This is a
fair assumption, as the referendum will not take place
unless the participants agree to the published param-
eters. Furthermore, we assume that it is infeasible
for adversaries to fake RSA signatures or break en-
crypted messages. Adversaries are not able to resolve
the physical identity of other participants by inspect-
ing network traffic. This is realistic if participants
use TOR. Finally, we assume that adversaries do not
have the resources to break the ledger’s integrity. We
assume that the ledger is based on a blockchain thus
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this property is ensured. One of the characteristics of
blockchains is that it requires a practically infeasible
computational effort to break their integrity protec-
tion. [Gaetani et al., 2015]
We assume that the protocol either results in a prov-
ably correct result, or the participants can detect
anomalies. However, we do not expect the partici-
pants to correct detected issues.

3.4 Objectives

We set the following four objectives for our proposed
protocol:

1. Confidentiality : The referendum must be con-
ducted in such a way that it is impossible to infer
the choices made by individual voters.

2. Transparency : The referendum must be trans-
parent. This means that every participant must
obtain a complete trace of the operations per-
formed, by whom and when. This notably covers
the communication among participants through-
out the referendum.

3. Verifiability of the outcome : The referen-
dum result must be verifiable to every partic-
ipant. That means he must be able to au-
tonomously evaluate the correctness of the re-
sult.

4. Immutability of proceedings: Proceedings
are the logs of all actions performed by partici-
pants from the moment of referendum initializa-
tion until the determination of the result. Pro-
ceedings must arise directly upon execution of
the described actions. Once persisted, proceed-
ings must be immutable. That is to say it must
be impossibly to modify or even delete persisted
proceedings.

4 Building Blocks

4.1 Secret Sharing Scheme

Any secret sharing scheme supporting additive and
multiplicative homorphic operations will serve for our

protocol. We decided for the SEPIA [Many et al.,
2012] specification of Shamir’s Secret Sharing, due
to its good documentation and ease of integration.
Shamir’s Secret Sharing is an instance of SMPC
schemes. As such, it allows to perform computations
without having to reveal the original inputs to indi-
vidual parties.

4.1.1 t-n threshold systems

A t−n threshold system allows splitting a secret into
n shares in such a way that any t of them suffice to re-
construct the original secret. Subsets with less than t
shares do not reveal any information about the secret.
If the shares are distributed to multiple parties, we
can thus create an effective mechanisms against col-
lusion. If shares of a secret are distributed among n
parties, t of them must cooperate, to reconstruct the
secret. With a greater value t, the protection against
collusive reconstruction rises. However, in case of a
desired reconstruction, increasing the offset between
t and n leads to enhanced robustness, as it makes
the reconstruction redundant to the unavailability of
single parties.
The ratio of t to n can thus be adjusted, to meet
a distributed protocol’s security and robustness re-
quirements.

4.1.2 Homomorphic operations

We make use of a secret sharing scheme that supports
additive and multiplicative homomorphic operations.
This means the secret sharing scheme provides a way
to perform operations on the shares of different se-
crets, so that the fusion of the resulting shares pro-
vides values that are equivalent to calculations done
on the original secrets. Shamir’s secret sharing sup-
ports both additive and multiplicative homomorphic
operations. However the multiplicative component
has side effects that limit its practical application.
Specifically, it increases the amount of shares required
for a later reconstruction of the result value. This
problem is was first mentioned in [Benaloh, 1987].
The practical consequences for our protocol are dis-
cussed in section 7.
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4.2 Distributed Ledger Technology

Our protocol relies on a precise log of communica-
tion that cannot be tampered with. We therefore
use Distributed Ledger Technology as the communi-
cation channel among participants. Specifically, us-
ing a blockchain ensures that manipulation of per-
sisted data is computationally infeasible. To do so
an adversary would have to outperform the honest
majority of mining participants.

4.3 Asymmetric Encryption

Although our protocol requires a complete listing of
communication meta-data, there are good reasons
to delimit the content of messages to the recipient.
We therefore use asymmetric encryption to generate
public-private keypairs which allow encryption and
decryption of directed messages. Furthermore, these
keys are used for message signing and authorship val-
idation.

4.4 Anonymous Credentials

Anonymous credentials allow a restricton of services
to specific users, without a need to verify identities
at the moment of access. The key idea is to intro-
duce an external entity that hands out cryptographic
tokens to eligible users [Chaum, 1985]. Those users
can later use their credentials to gain admission to an
access controlled service. Though modern implemen-
tations [Lysyanskaya and Camenish, 2001] respond
to advanced requirements such as detection of dou-
ble spending or a privacy aware verification of user
specific attributes, we only make use of the key fea-
ture, as it allows the anonymous registration of eligi-
ble voters.

5 The Protocol

The key idea behind our contribution is to use the
ledger as a complete log of all communication be-
tween participants. This allows anyone, with access
to the ledger, to autonomously compare the actual
proceedings to the expected protocol. This verifica-
tion can occur locally. Participants therefore gain

proof of correctness by themselves and not via third
parties.
Furthermore, the anonymity of individual partici-
pants effectively prevents communications via side
channels. This is discussed in more detail in section
7.
As our protocol is based on a secret sharing sys-
tem, the introduction of a public ledger is counter-
intuitive. Secret sharing systems usually gain secu-
rity by dividing information into separate shares. Yet
we suggest to store such shares side by side in a public
ledger. We make this design feasible, by additionally
protecting persisted shares with asymmetric encryp-
tion. This ensures that only an intended target entity
has access to a specific set of sensitive information.
At the same time, the ledger as an exclusive com-
munication channel allows us to monitor the message
meta-data of all participants. This allows clients to
autonomously verify the absence of adversary collu-
sion, targeted on the underlying t− n threshold sys-
tem. Secret communication via side-channels is not
an issue, as participants only know another by their
anonymous identity.
As the verification of the ledger’s integrity by itself
does not require clients to actively mine, we consider
it reasonable to enable mobile clients as blockchain
replicating nodes. This is a valid assumption, given
two conditions:

1. The used blockchain serves exclusively for the
purpose of the current referendum. By restrict-
ing the ledger content to this specific payload,
the blockchain’s data volume is significantly re-
duced. This is an essential decision, since pop-
ular public chains can easily exceed the storage
capacity of a mobile client and therefore render
a replication infeasible.

2. As shown in Figure 1, a portion of the partici-
pants relies on non-mobile hardware, bearing the
resources for active mining. This is likewise an
important condition, as the blockchain only pro-
vides integrity protection when an honest ma-
jority of miners can not be computationally out-
performed by adversaries [Gaetani et al., 2015].
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Figure 1: Illustration of referendum participants con-
nected as blockchain nodes. Every referendum par-
ticipant replicates the ledger. Although the nodes
constantly synchronize, referendum related messages
are exchanged exclusively via ledger-records. There-
fore all clients hold a transparent copy of the pro-
ceedings. As pictured above, the protocol does not
bind specific roles to particular hardware.

5.1 Protocol Overview

Our referendum protocol is based on a secure
multi-party computation scheme, with the restriction
added that all inter-participant communication oc-
curs exclusively over a public ledger. That is to say,
parties can only communicate by placing public mes-
sages in the ledger. Messages clearly state the recip-
ient and are furthermore signed by the author. This
provides a transparent and clear trace of all arising
inter-participant communication.
The SMPC by itself allows a privacy aware compu-
tation of the referendum outcome. The SMPC’s ho-
momorphism ensures that computing entities do not
learn about sensitive input data, since they work on
an encrypted transformation of the data.
Proof of conformity to the designated protocol is
supported by the ledger’s immutability. Voters
can analyze communication meta-data of the exe-
cuted SMPC. This way every participant can assess
whether the actual communication followed the pro-
tocol. As all information required to perform this
validation is stored in the ledger, referendum partic-
ipants can implement all compliance checks locally,

without the need to trust third parties. This allows
the protocol to function in trustless network environ-
ment.
Ultimately, after a successful validation of the pro-
ceedings, each voter holds the certainty that the out-
come was determined correctly and no vote has been
compromised.

5.2 Protocol Outline

Figure 2 illustrates how individual roles chronologi-
cally submit and retrieve messages to the ledger. For
each action, it also indicates the corresponding pro-
tocol phase.

1. Initiation : In this step, the referendum condi-
tions are written to the ledger: Referendum con-
text, voting options, identities of registered vot-
ers, etc...

2. Vote submission : Voters look up the refer-
endum conditions and deposit their ballots, se-
cured by the secret sharing scheme and asym-
metric encryption.

3. Intermediate result computation : Work-
ers perform homomorphic operations on the se-
cured ballots, then write intermediate results
and checksums back to the ledger.

4. Determination and validation of the out-
come : Voters pick up the intermediate results
and checksums to determine the final outcome
and run verifications.

The next section provides more details regarding
the individual phases.

5.2.1 Initiation

The goal of the first phase is to ensure that all par-
ticipants operate on identical referendum parameters.
The referendum initiator init ensures this with a sin-
gle broadcast message:

1. init places an initial broadcast message bid(init)
in the ledger. The content of this message,
b̃id(init) accumulates all static referendum pa-
rameters. It includes:

8



Figure 2: Illustration of protocol phases. Downward
arrows indicate the persistence of messages types into
the ledger, upward arrows indicate the lookup of mes-
sages (indicated by type). Time advances from left to
right.

• The identities (public keys) of all eligible
voters: V̄ = {id(vi)|vi ∈ V }.

• A subset of identities that names the des-
ignated workers: W̄ = {id(wj)|wj ∈W} as
well as the individual share affiliation. The
latter is required by the voters in the next
phase, so they know which share belongs to
which worker.

• The referendum context and semantics of
numeric voting options. This can be for
instance:
Are cats cooler than dogs? Yes = +1, No
= −1.

• A set of time-stamps that define the tran-
sitions between subsequent phases Q =
{q1−2, q2−3, q3−4}. The fixed time stamps
are required to ensure that at the start of
each phase all required input data is present
in the ledger. As q1−2 marks the transition
to phase 2, this timestamp matches the mo-
ment of placing bid(init) in the ledger.

By communicating these conditions through a
ledger, all participants obtain the exact same un-
derstanding of the expected referendum proceed-
ings. This initial message contains all informa-
tion required to outline further communication
among participants.

5.2.2 Vote Submission

In the second phase, voters cast their votes. Each
voter vi ∈ V does the following:

1. vi retrieves the initiator’s broadcast message
from the ledger.

2. vi secretly chooses his personally preferred vot-
ing option and determines the corresponding nu-
meric value ψi. The mapping is specified in
bid(init).

3. Based on ψi, voter vi then generates a set of
n shares {σi1, ..., σin}. He does so following a
t−n threshold secret sharing scheme. The exact
parameters for this step are provided in bid(init).

4. Each generated share is intended for a specific
worker wj . Voter vi encrypts each generated
share σij with the corresponding worker wj ’s
public key w̃j . The exact mapping of shares to
workers is once more described in bid(init). The
target worker’s id is also the public key to use
for encryption.

5. vi packs all n cypher-shares s̃ij = pubj(σij),
j ∈ {1, ..., n} individually into n messages sij
and initiates their persistence in the ledger. The
horizontal arrows in Figure 3 illustrate this step.

Voters can perform the above steps until timestamp
q2−3 is reached. Repeated submissions before the
deadline are allowed. Those are considered an up-
date to one’s own ballot. Messages sij submitted af-
ter q2−3 are considered non-compliant to the protocol
and will be ignored.

5.2.3 Intermediate result computation

In the third phase, each worker wj performs the fol-
lowing actions to contribute intermediate result val-
ues for the referendum outcome and checksum com-
putations:

1. wj retrieves the set of k encrypted share-
messages destined to him: {s1j , ..., skj}.

2. wj retrieves the payload of received messages
and this way holds k shares, each encrypted with
his public key: s̃1j , ..., s̃kj .

3. wj decrypts every single share using his private
key and obtains a set of k unencrypted shares:
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{σ1j , ..., σkj}. These are the k shares, the voters
V = {v1, ..., vk} securely communicated to him
via ledger.

4. Based on {σ1j , ..., σkj}, wj participates in the
homomorphic calculation of intermediate result
shares:

• He contributes to obtaining the sum of all
votes, with an intermediate result share r̃j .

• He contributes to obtaining the sum of all
squared votes, with an intermediate result
share c̃j .

The sum of squared votes will later serve to de-
tect illegal inputs. Note that intermediate result
shares r̃j , j ∈ W̄ , respectively c̃j , j ∈ W̄ must be
combined to obtain the actual results.

5. wj converts r̃j and c̃j to broadcast messages rj ,
cj and makes those get persisted in the ledger.

The execution of the above steps by a worker wj ,
leading to persistence of rj and cj , is illustrated in
Figure 3 by a downward arrow.
q3−4 marks the moment by which workers must have
their intermediate results persisted.

5.2.4 Determination and validation of the
outcome

In the final phase, voters individually reconstruct the
referendum outcome and evaluate public proceedings’
conformity. To achieve this, every voter vi performs
the following actions on the intermediate result shares
{r̃j |j ∈ W̄} and {c̃j |j ∈ W̄}:

1. vi picks up the corresponding result and check-
sum messages: {rj |j ∈ W̄} and {cj |j ∈ W̄}.

2. vi obtains two sets of shares, by combining the
message payloads: {r̃j |j ∈ W̄} and {c̃j |j ∈ W̄}

3. He removes the protection of the threshold sys-
tem for two specific values. Precisely, he com-
bines the intermediate result shares {r̃j |j ∈ W̄},
respectively {c̃j |j ∈ W̄}. These sets of shares
express the homomorphic equivalent of:

Figure 3: Illustration of vote submission by a voter
vi and intermediate result computation by a worker
wj . Note that all messages arising throughout these
steps are persisted in the ledger.

• The referendum outcome, r =
∑
i∈V ψi

• A referendum checksum, c =
∑
i∈V ψ

2
i

Consequently by combining the corresponding
shares, vi obtains r and c. The checksum c al-
lows the detection of illegal votes. As all votes
are expected to be either of ±1, it must hold that
c = k. If that is not given, the participant di-
rectly knows that at least one illegal input value
was submitted.2

2Still, it is possible to generate a valid checksum with clev-
erly arranged illegal input values. We discuss this threat in
section 7.
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6 Analysis of objective fulfill-
ment

In this section we evaluate how well the individual
objectives are met by the suggested protocol.

6.1 Immutability of the referendum
proceedings

Proceedings are immutable whenever they are pre-
served in a way that renders retroactive tampering
infeasible. Given the presented protocol, proceed-
ings can be expressed by a complete log of partici-
pant-exchanged messages. As those messages are ex-
changed publicly through the ledger, the ledger con-
tent itself serves as complete transcript of referendum
proceedings. We ensure the ledgers exclusive status
as targeted communication medium by concealing the
physical identity of participants behind pseudonyms.
Since the blockchain ensures the immutability of per-
sisted records, we obtain an immutable log of the ref-
erendum proceedings.

6.2 Confidentiality of votes

A ballot is secret if no entity other than the voter him-
self knows the submitted value. Our protocol applies
a strong protection of votes, by first splitting them
according a secret sharing scheme and then encrypt-
ing the obtained shares asymmetrically. Unless an
adversary manages to break asymmetric encryption
or secretly gather the private keys of t workers for a
collusive ballot reconstruction, the confidentiality of
submitted votes remains ensured. Though asymmet-
ric encryption mechanisms are theoretically break-
able, it is commonly assumed a computationally in-
feasible task. That is to say with current hardware it
is extremely unlikely for an adversary to reconstruct
a secret without the required key material.
Furthermore, by analyzing the ledger, voters can re-
construct the message flow among participants and
exclude even the possibility that workers colluded to
reunite shares. As workers only know another by
their pseudo-identifiers, they can not secretly estab-
lish a communication side channel for collusion.

6.3 Referendum validation

To verify the correctness of the referendum outcome,
each participant must be able to validate that two
conditions are met:

1. The inputs that the outcome evaluation occurred
on, are valid. This means all votes must be valid
numeric options. As we will see in section 7, this
condition restricts the range of valid parameters
for the t− n threshold system.

2. The evaluation itself was conducted correctly.
This means that the intermediate results com-
puted by the workers must be correct for the
provided inputs.

The second condition can be ensured by redundancy.
The polynomial based secret sharing scheme allows
to detect and ignore outliers. Imagine 10 sampling
points are provided for a polynomial of degree two.
Now, if nine of them match the polynomial but a sin-
gle point does not, this would suggest that the 10th
support is incorrect.
Assuming that intermediate results are verifiable, the
worker-provided checksum allows a privacy aware in-
put validation.

6.4 Transparency

A referendum is considered transparent if all partici-
pants possess a correct and complete log of all actions
performed throughout the entire referendum. In our
model, all actions eventually result in communica-
tion. As we force all communication to run through
the ledger, the trace of deposited messages provides
a transparent and verifiable log of actions.

7 Security analysis

In this section, we evaluate whether adversary strate-
gies are detrimental to the suggested protocol:

• Intentional inactivity: Any participant can
violate the protocol by intentional inactivity
where interaction is expected. Eligible voters
can choose not to distribute shares or only send
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them to a subset of workers. A worker can ignore
the expected submission of intermediate result
shares.
Although the payload of vote-messages is en-
crypted, all participants can inspect the ledger
content and detect if eligible voters are inactive
or do not communicate with all designated work-
ers. The default strategy is to systematically ig-
nore all vote-shares of voters that do not comply
to the expected behavior. This way the disad-
vantage of inactivity lies entirely with the ad-
versary. Inactive workers are harder to prevent,
but the redundancy of the t-n-threshold system
allows a determination of the evaluation outcome
until up to n − t inactive workers. However,
in terms of the referendum outcome’s checksum,
the boost of sampling points required for recon-
struction, lowers the protocol’s robustness to a
tolerance of at most of n − t2 inactive workers.
[Benaloh, 1987]

• Syntactically incorrect messages: Partici-
pants can violate the protocol by sending syn-
tactically incorrect messages.
Syntactic errors can be easily detected with
syntax-schemes. The default strategy is to ig-
nore any syntactically incorrect message. This
way, messages that are in no relation to the pro-
tocol also have no impact. If ignoring the mes-
sage results in an interpreted participant inac-
tivity, the above inactivity analysis is applicable
here, too.

• Impersonation: Participants may try to ille-
gally send messages in the name of another par-
ticipant.
Impersonated messages are easy to detect, since
their signature does not match the expected au-
thor. Messages with invalid signature are sys-
tematically ignored.

• Invalid voting options: Voters are expected
to vote for either ±1. However, as their shares
are submitted in encrypted form, they might try
to boost their influence with higher (or lower)
numeric values.
For colluding participants, it is possible to ar-

range invalid votes in a way that the input vali-
dation checksum is still fulfilled.3 However, this
attack is not in the interest of the adversaries,
since it can only diminish the overall influence
of the outcome. If parties collusively submit ille-
gal inputs that pass the validation, the impact of
those inputs is lower than the impact they would
have achieved with legal input values. This is
a consequence of the Cauchy-Hölder inequality :∑n
k=1 |xkyk| ≤ (

∑n
k=1 |xk|

p
)
1/p

(
∑n
k=1 |yk|

q
)
1/q

,
with n ∈ N, {x1, ..., xn}, {y1, ..., yn} ∈ R, p, q ∈
[1,∞).4

Furthermore, it is not a severe threat to the pro-
tocol as it requires collusion.

• Incorrect intermediate results: Workers
might submit incorrect intermediate results on
purpose. In case of an extreme threshold sys-
tem configuration with t = n, the existence of
incorrect result shares is neither detectable nor
correctable. However, with rising share redun-
dancy, an honest majority of workers can push
incorrect shares into a detectable outlier position
(see section 6). However, massively colluding
adversaries could also push an honest minority
into an outlier position. Another inconvenience
for worker adversaries is that they can not pre-
dict the effects of their manipulation. Given the
SMPC, an altered value can influence the result
in either direction. As discussed previously, we
furthermore hinder collusive attacks by conceal-
ing the participants’ natural identities.

• Double voting: Voters can repeat the genera-
tion, encryption and distribution of shares.
As the encrypted vote-shares are exchanged via
the public ledger and sender and recipient re-

3Example: Imagine two votes ψ1 = 2
√

1.5, ψ2 = 2
√

0.5 are
submitted, their checksum is ψ2

1 + ψ2
2 = 2, while the resulting

vote impact is ψ1 + ψ2 6= 2.
4If we chose p = 2, q = 2, yk = 1, the inequality is reduced

to
∑n

k=1 |xk| ≤ 2
√∑n

k=1 |xk|2 2
√
n. However, the client side

checksum verification ensures that
∑n

k=1 |xk| = n, which fur-
ther reduces the inequality to

∑n
k=1 |xk| ≤ n. This maximum

value is obtained with valid inputs xk ∈ {−1,+1}, rendering
a collusive construction of illegal inputs pointless, since such
inputs cannot surpass the impact of valid values, on the refer-
endum.
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main un-encrypted header attributes, double
voting is easily detectable. The default strategy
is to discard all but the most recent share that
a specific voter submits to a specific worker. A
voter can thus update her choice, but not in-
crease the impact.

• De-anonymization: Participants might be in-
terested to identify the physical entity that op-
erates behind a participant pseudonym. This
would enable outside-ledger undetected commu-
nication. As all network traffic runs over TOR
connections, a de-anonymization is not feasible.

• Communication side channel creation: Ad-
versaries may try to secretly establish an alter-
nate platform for direct communication, parallel
to the ledger.
Though secret inter-participant communication
is a severe threat to the protocol’s transparency
and opens a gate for further attacks, it is not
trivial to establish. A resilient system can
counter this by setting the threshold-value rea-
sonably high. Specifically, this means that the
probability of the random workers to fall into
societal cliques must be minimized. If adver-
saries do not already know their physical identi-
ties, they have to communicate publicly, as they
do not know who to address to. Adversaries pub-
licly declaring their will to collude can be easily
detected.

• Voter exclusion: In section 2, we criticized the
usage of an anonymous credential server. How-
ever, in our case anonymous credentials are only
used for registration, not for voting. In [Diaz
et al., 2009], a voter cannot expose a dishonest
behavior of a petition server. He cannot prove
his previous interaction with the server and it
would reveal his voting decision. In our case
both does not apply. The registration itself can
be logged in the ledger. Likewise the keys of reg-
istered voters, since they can be logged as part
of the public init message, bid(init). Thus a legit-
imate voter could easily prove his exclusion by a
malicious server.

8 Conclusion

8.1 Objectives fulfillment

Our work demonstrates how the challenges of elec-
tronic referendums can be answered with a creative
combination of existing approaches. By bringing to-
gether the potential of blockchain technology and
secure multiparty computation, we constructed a
highly transparent referendum protocol that allows
participants to autonomously verify proceedings and
outcome. Traditional t − n threshold based systems
gain security exclusively by selection of parameters
that render successful collusive attacks unlikely. To
the best of our knowledge there is no other system
that further enforces security, by considering proofs
that inspect communication meta-data, protected by
ledger technology. This concept generates trust at
client side, because with exception to the anonymous
credential issuer a need for trusted third parties is
eliminated.
We provided a realistic adversary model and analyzed
how our protocol withstands corresponding attacks.

8.2 Future Work

In future research we would like to further investigate
a meaningful selection of referendum parameters. We
could also imagine to experiment with machine learn-
ing approaches, to reach an optimal trade-off between
security and scaling. Also we would like to explore
other input validation methods that have less impact
on the voter-worker ratio. Another open question is
how to best select the worker subset. Given the fo-
cus of our current work on the security aspects of
the protocol, we are interested in performance evalu-
ations of a practical implementation of the protocol,
particularly in a mobile scenario.
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